Mole Calculation Worksheet

	·
1)	How many moles are in 40.0 grams of water?
2)	How many grams are in 3.7 moles of Na ₂ O?
3)	How many atoms are in 14 moles of cadmium?
4)	How many moles are in 4.3 x 10^{22} molecules of H_3PO_4 ?
5)	How many molecules are in 48.0 grams of NaOH?
6)	How many grams are in 4.63×10^{24} molecules of CCl ₄ ?

Solutions

1) How many moles are in 40.0 grams of water?

$$40.0 \text{ g H}_2\text{O} \times \frac{1 \text{ mole H}_2\text{O}}{18.01 \text{ g H}_2\text{O}} = 2.22 \text{ mole H}_2\text{O}$$

2) How many grams are in 3.7 moles of Na₂O?

3.7 moles
$$Na_2O \times \underline{62 \text{ g } Na_2O} = 230 \text{ g } Na_2O$$

1 mole Na_2O

3) How many atoms are in 14 moles of cadmium?

14 mole Cd x
$$6.022 \times 10^{23}$$
 atoms Cd = 8.4 x 10^{23} atoms Cd 1 mole Cd

4) How many moles are in 4.3 x 10²² molecules of H₃PO₄?

$$4.3 \times 10^{22}$$
 molecules $H_3PO_4 \times \underbrace{\frac{1 \text{ mole } H_3PO_4}{6.022 \times 10^{23} \text{ molecules } H_3PO_4}}_{= 7.1 \times 10^{-2} \text{ moles } H_3PO_4$

5) How many molecules are in 48.0 grams of NaOH?

48.0 molecules NaOH x
$$\frac{1 \text{ mole NaOH}}{40 \text{ g NaOH}}$$
 x $\frac{6.022 \times 10^{23} \text{ molecules NaOH}}{1 \text{ mole NaOH}}$
= 7.23 x 10^{23} molecules NaOH

6) How many grams are in 4.63×10^{24} molecules of CCl₄?

$$4.63 \times 10^{24}$$
 molecules CCl₄ × $\frac{1 \text{ mole CCl}_4}{6.022 \times 10^{23}}$ molecules CCl₄ × $\frac{153.8 \text{ g CCl}_4}{1 \text{ mole CCl}_4}$ = 1180 g CCl₄

Mole Worksheet

Use two decimal places for the molar masses and report your answer to the correct number of significant figures.

- 1) 3.00 mol NH₃
- 2) 9.02 mol H₂O
- 3) 0.2000 mol SO₃
- 4) 0.0106 mol NO₂
- 5) 6.0 mol MgCl₂
- 6) 12.7 g I₂
- 7) 8.00 g NaOH
- 8) 5.657 g H₂SO₄
- 9) 32 g KNO₃
- 10) $28.4 \text{ g } C_{12}H_{22}O_{11}$

Solutions

- I. Calculate either the number of grams or the number of moles.
 - 1) $m = 3.00 \text{ mol NH}_3 \times 17.04 \text{ g NH}_3/1 \text{ mol NH}_3 = 51.1 \text{ g NH}_3$
 - 2) $m = 9.02 \text{ mol H}_2\text{O} \times 18.02 \text{ g H}_2\text{O}/1 \text{ mol H}_2\text{O} = 163 \text{ g H}_2\text{O}$
 - 3) $m = 0.2000 \text{ mol SO}_3 \times 80.06 \text{ g SO}_3/1 \text{ mol SO}_3 = 16.01 \text{ g SO}_3$
 - 4) $m = 0.0106 \text{ mol NO}_2 \times 46.01 \text{ g NO}_2/1 \text{ mol NO}_2 = 0.488 \text{ g NO}_2$
 - 5) $m = 6.0 \text{ mol MgCl}_2 \times 95.21 \text{ g MgCl}_2/1 \text{ mol MgCl}_2 = 570 \text{ g MgCl}_2$
 - 6) $n = 12.7 \text{ g} \cdot I_2 \times 1 \text{ mol } I_2/253.83 \text{ g} \cdot I_2 = 0.0500 \text{ mol } I_2$
 - 7) $n = 8.00 \text{ g NaOH} \times 1 \text{ mol NaOH}/40.00 \text{ g NaOH} = 0.200 \text{ mol NaOH}$
 - 8) $n = 5.657 \text{ g-H}_2\text{SO}_4 \times 1 \text{ mol H}_2\text{SO}_4/98.08 \text{ g-H}_2\text{SO}_4 = 0.05768 \text{ mol H}_2\text{SO}_4$
 - 9) $n = 32 \frac{g \text{ KNO}_3}{3} \times 1 \text{ mol KNO}_3/101.11 \frac{g \text{ KNO}_3}{3} = 0.32 \text{ mol KNO}_3$
 - 10) $n = 28.4 \text{ g } C_{12}H_{22}O_{11} \text{ x 1 mol } C_{12}H_{22}O_{11}/342.34 \text{ g } C_{12}H_{22}O_{11} = 0.830 \text{ mol } C_{12}H_{22}O_{11}$

Mole Calculation Practice Worksheet

Anguar	tho	falla	ina	augotiona
Allowel	uie	IUIIU	wiiiy	questions:

1)	How many moles are in 25.0 grams of water?
2)	How many grams are in 4.500 moles of Li ₂ O?
3)	How many molecules are in 23.0 moles of oxygen?
4)	How many moles are in 3.4 x 10 ²³ molecules of H ₂ SO ₄ ?
5)	How many molecules are in 25.0 grams of NH ₃ ?
6)	How many grams are in 8.200 x 10^{22} molecules of N_2I_6 ?

Mole Calculation Practice Worksheet Solutions

Answer the following questions:

- 1) How many moles are in 25.0 grams of water?
 - 1.39 moles

1 mole
$$H_2O = 18.0 \text{ g } H_2O$$

$$\frac{25 \text{ g H}_2\text{O}}{18.0 \text{ g H}_2\text{O}} = 1.39 \text{ mol H}_2\text{O}$$

- 2) How many grams are in 4.500 moles of Li₂O?
 - 134.6 grams

1 mole
$$Li_2O = 29.90 \text{ g } Li_2O$$

$$\frac{4.500 \text{ mol Li}_{2}O | 29.90 \text{ g Li}_{2}O}{1 \text{ mol Li}_{2}O} = 134.6 \text{ g Li}_{2}O$$

- 3) How many molecules are in 23.0 moles of oxygen?
 - 1.38 x 10²⁵ molecules

1 mole oxygen molecules = 6.02 x 10²³ oxygen molecules

- 4) How many moles are in 3.4×10^{23} molecules of H_2SO_4 ?
 - 0.56 moles

1 mole anything = 6.02×10^{23} anything

$$\frac{3.4 \times 10^{23} \text{ molecules H}_2\text{SO}_4}{6.02 \times 10^{23} \text{ molecules H}_2\text{SO}_4} = 0.56 \text{ mol H}_2\text{SO}_4$$

5) How many molecules are in 25.0 grams of NH₃?

8.85 x 10²³ molecules

1 mole $NH_3 = 17.0 \text{ g } NH_3$

1 mole anything = 6.02×10^{23} anything

6) How many grams are in 8.200 x 10^{22} molecules of N_2I_6 ?

107.5 grams

1 mole $N_2I_6 = 789.4 \text{ g } N_2I_6$

1 mole anything = 6.02×10^{23} anything

$8.200 \times 10^{22} \text{ molecules N}_2 I_6$	1 mol N ₂ I ₆	789.4 g N ₂ I ₆	- 107 F a N I
	6.02 x 10 ²³ molecules N ₂ I ₆	1 mol N ₂ l ₆	$= 107.5 \text{ g N}_2 I_6$