- 2. Draw the Lewis dot structures for each of the following molecules:
- a. H₂<u>S</u> c. <u>S</u>O₃

b. <u>C</u>H₂Br₂

d. **H<u>C</u>N**

- 3. Draw the Lewis dot structure for each of the following polyatomic ions:
- a. $\underline{N}H_4^+$ c. $\underline{P}O_4^{-3}$

b. <u>N</u>O₃⁻

d. <u>C</u>O₃²⁻

- 4. For the following molecules or ions (where the central atom is <u>underlined</u>):
 - i. Draw the Electron dot structure.
 - ii. Determine the shape of the molecule.
 - iii. Determine the approximate bond angles.
 - a. $\underline{C}H_2F_2$ b. $\underline{O}F_2$

c. phosphite ion, $\underline{P}O_3^{-3}$

5. For each of the bonds below:

- i. Use delta notation (δ and δ ⁻) to indicate which atom is more electronegative, and
- ii. Use an arrow to point from the less electronegative atom to the more electronegative atom.

	н0
N-0	

6. Identify the type of bond described for each of the following as ionic, polar covalent, nonpolar covalent, or metallic.

i. The C–O bonds in CO_2 .	iv. The C–C bonds in C_3H_8
ii. The bonds in F ₂ .	v. The bonds in Ba.
iii. The bonds in K₂O.	vi. The bonds in H_2O .

7. Determine whether the following five molecules are polar or nonpolar:

- 6. _polar covalent_ i. The C–O bonds in CO₂. nonpolar covalent_ iv. The C–C bonds in C₃H₈
 nonpolar covalent ii. The bonds in F₂. metallic__ v. The bonds in Ba.
 ionic iii. The bonds in K₂O. _polar covalent_ vi. The bonds in H₂O.
- 7. CO₂ is nonpolar because the two polar bonds are equal and opposite so cancel out
 - H₂O is polar because the bonds are not opposite and don't cancel out
 - $\ensuremath{\text{SO}_3}$ is nonpolar because the bonds are all the same and cancel out, the outer atoms all the same
 - CCl₄ is nonpolar because the bonds are all the same and cancel out, the outer atoms all the same
 - CHCl₃ is polar because the bonds are not the same and don't cancel out, the outer atoms are different