Kinetic and Potential Energy Worksheet

Classify the following as a type of potential energy or kinetic energy (use the letters K or P)

1. A bicyclist pedaling up a hill $_$_K__
2. An archer with his bow drawn _P__
3. A volleyball player spiking a ball __K_
4. A baseball thrown to second base \quad _ K
5. The chemical bonds in sugar __P__
6. The wind blowing through your hair __K \qquad
7. Walking down the street \qquad _
8. Sitting in the top of a tree \qquad P
9. A bowling ball rolling down the alley __K__ 10. A bowling ball sitting on the rack \qquad

What examples can you find in your home that are examples of kinetic and potential energy? (name two for each type of energy)
11. Kinetic: \qquad Washing Machine \qquad
12. Kinetic: \qquad Ceiling Fan \qquad
13. Potential: \qquad Snow sitting on my roof \qquad
14. Potential: \qquad All the junk on my top shelf in my office \qquad
Kinetic Energy - what does it depend on?

- The more \qquad mass \qquad an object moves, the more \qquad potential energy \qquad it has.
- The greater the \qquad velocity \qquad of a moving object, the more \qquad kinetic energy \qquad it has.
- Kinetic energy depends on both \qquad mass \qquad and \qquad velocity \qquad .

Solve the following word problems using the kinetic and potential energy formulas (Be sure to show your work!)

Formulas:

$$
\begin{array}{cccc}
\text { KE = 0.5 x m x v } & \text { OR } & \mathbf{P E}=\mathbf{m} \mathbf{x ~ g ~ x ~ h ~} \\
v=\text { velocity or speed } & m=\text { mass in } k g & & g=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad h=\text { height in meters }
\end{array}
$$

15. You serve a volleyball with a mass of 2.1 kg . The ball leaves your hand with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball has ___KINETIC \qquad energy. Calculate it and show your work.

$$
\mathrm{KE}=0.5 \times 2.1 \times 30^{2} \quad \mathrm{KE}=945 \mathrm{~J}
$$

16. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby has a mass of 1.5 kg . The carriage has _POTENTIAL \qquad energy. Calculate it and show your work.

$$
\mathrm{PE}=1.5 \times 9.81 \times 21 \quad \mathrm{PE}=309.015 \mathrm{~J}
$$

17. A car is traveling with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and has a mass of 1120 kg . The car has \qquad energy. Calculate it and show your work.

$$
\mathrm{KE}=0.5 \times 1120 \times 40^{2} \quad \mathrm{KE}=896000 \mathrm{~J}
$$

18. A cinder block is sitting on a platform 20 m high. It weighs 7.9 kg . The block has \qquad POTENTIAL energy. Calculate it and show your work.

$$
\mathrm{PE}=7.9 \times 9.81 \times 20 \quad \mathrm{PE}=1549.98 \mathrm{~J}
$$

19. A roller coaster is sitting at the top of a 72 m hill and has 94646 J . The coaster (at this moment) has __POTENTIAL \qquad energy. What is its mass? Calculate it and show your work.

$$
\mathrm{M}=\mathrm{PE} / \mathrm{G} \times \mathrm{H} \quad \mathrm{M}=94646 /(9.81 \times 72) \quad \mathrm{M}=134 \mathrm{~kg}
$$

20. There is a 19 kg bell at the top of a tower that is storing 15745J of energy. The bell has __POTENTIAL \qquad energy. What is the height of the tower? Calculate it and show your work.

$$
\mathrm{H}=\mathrm{PE} / \mathrm{G} \times \mathrm{M} \quad \mathrm{H}=15745 \mathrm{~J} /(9.81 \times 19) \quad \mathrm{H}=84.47 \mathrm{~m}
$$

21. Determine the kinetic energy of a $1000-\mathrm{kg}$ roller coaster car that is moving with a speed of $20.0 \mathrm{~m} / \mathrm{s}$.

$$
\mathrm{KE}=0.5 \times 1000 \times 20^{2} \quad \mathrm{KE}=200000 \mathrm{~J}
$$

22. If the roller coaster car in the above problem were moving with twice the speed, then what would be its new kinetic energy?

$$
\mathrm{KE}=0.5 \times 1000 \times 40^{2} \quad \mathrm{KE}=3200000 \mathrm{~J}
$$

23. A cart is loaded with a brick and pulled at constant speed along an inclined plane to the height of a seat-top. If the mass of the loaded cart is 3.0 kg and the height of the seat top is 0.45 meters, then what is the potential energy of the loaded cart at the height of the seat-top?

$$
\mathrm{PE}=3.0 \times 9.81 \times 0.45 \quad \mathrm{PE}=13.24 \mathrm{~J}
$$

24. A $75-\mathrm{kg}$ refrigerator is located on the 70 th floor of a skyscraper (300 meters above the ground) What is the potential energy of the refrigerator?

$$
\mathrm{PE}=75 \times 9.81 \times 300 \quad \mathrm{PE}=220725 \mathrm{~J}
$$

25. The potential energy of a $40-\mathrm{kg}$ cannon ball is 14000 J . How high was the cannon ball to have this much potential energy?

$$
\mathrm{H}=\mathrm{PE} /(\mathrm{G} \times \mathrm{M}) \quad \mathrm{H}=14000 /(9.81 \times 40) \quad \mathrm{H}=35.68 \mathrm{M}
$$

The Law of Conservation of Energy states that:

* Energy can be neither __CREATED \qquad nor \qquad DESTROYED
* Energy can be __TRANSFORMED \qquad from one form to another.
* The Total amount of ENERGY is the \qquad before and after any energy transformation

