Kinetic and Potential Energy Worksheet

Classify the following as a type of potential energy or kinetic energy (use the letters K or P)	
1. A bicyclist pedaling up a hillK	6. The wind blowing through your hairK
2. An archer with his bow drawn _P	7. Walking down the streetK
3. A volleyball player spiking a ballK	8. Sitting in the top of a treeP
4. A baseball thrown to second baseK	9. A bowling ball rolling down the alleyK
5. The chemical bonds in sugarP	10. A bowling ball sitting on the rackP
What examples can you find in your home that are examples of kinetic and potential energy? (name two for each type of energy) 11. Kinetic:	
13. Potential: Snow sitting on my roof	
14. Potential:All the junk on my top shelf in my office	
Kinetic Energy – what does it depend on? ♦ The more <u>mass</u> an object moves, the more <u>potential energy</u> it has.	
• The greater the <u>velocity</u> of a mov has.	ing object, the more <mark>kinetic energy</mark> it
♦ Kinetic energy depends on both <u>mass</u>	andvelocity
Solve the following word problems using the kinetic and potential energy formulas (Be sure to show your work!)	
Formulas:	
KE = 0.5 x m x v ² OR	PE = m x g x h
v = velocity or speed $m = mass in kg$	$g = 9.81 m/s^2$ $h = height in meters$
15. You serve a volleyball with a mass of 2.1 kg. The ball leaves your hand with a speed of 30 m/s. The ball has <u>KINETIC</u> energy. Calculate it and show your work.	

 $KE = 0.5 x 2.1 x 30^2 \qquad KE = 945J$

16. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby has a mass of 1.5 kg. The carriage has _POTENTIAL______ energy. Calculate it and show your work.

 $PE = 1.5 \times 9.81 \times 21$ PE = 309.015J

17. A car is traveling with a velocity of 40 m/s and has a mass of 1120 kg. The car has **KINETIC** energy. Calculate it and show your work.

 $KE = 0.5 \text{ x } 1120 \text{ x } 40^2$ KE = 896 000 J

18. A cinder block is sitting on a platform 20 m high. It weighs 7.9 kg. The block has **POTENTIAL** energy. Calculate it and show your work.

PE = 7.9 x 9.81 x 20 PE = 1549.98J

19. A roller coaster is sitting at the top of a 72 m hill and has 94646J. The coaster (at this moment) has **<u>POTENTIAL</u>** energy. What is its mass? Calculate it and show your work.

M = PE / G x H M = 94646 / (9.81 x 72) M = 134 kg

20. There is a 19kg bell at the top of a tower that is storing 15745J of energy. The bell has **<u>POTENTIAL</u>** energy. What is the height of the tower? Calculate it and show your work.

H = PE / G x M H = 15745J / (9.81 x 19) H = 84.47m

21. Determine the **kinetic** energy of a 1000-kg roller coaster car that is moving with a speed of 20.0 m/s.

 $KE = 0.5 \text{ x } 1000 \text{ x } 20^2 \qquad KE = 200 \ 000 \text{J}$

22. If the roller coaster car in the above problem were moving with twice the speed, then what would be its new **kinetic** energy?

 $KE = 0.5 \text{ x } 1000 \text{ x } 40^2 \qquad KE = 3 \ 200 \ 000 \text{J}$

23. A cart is loaded with a brick and pulled at constant speed along an inclined plane to the height of a seat-top. If the mass of the loaded cart is 3.0 kg and the height of the seat top is 0.45 meters, then what is the **potential** energy of the loaded cart at the height of the seat-top?

 $PE = 3.0 \times 9.81 \times 0.45$ PE = 13.24J

24. A 75-kg refrigerator is located on the 70th floor of a skyscraper (300 meters above the ground) What is the potential energy of the refrigerator?

 $PE = 75 \times 9.81 \times 300$ $PE = 220 \times 725 J$

25. The potential energy of a 40-kg cannon ball is 14000 J. How high was the cannon ball to have this much **potential** energy?

 $H = PE / (G \times M)$ $H = 14000 / (9.81 \times 40)$ H = 35.68M

The Law of Conservation of Energy states that:

- Energy can be neither CREATED nor DESTROYED
- Energy can be <u>TRANSFORMED</u> from one form to another.
 The Total amount of <u>ENERGY</u> is the <u>SAME</u> before and after any energy transformation