## Kinetic and Potential Energy Worksheet

Classify the following as a type of potential energy or kinetic energy (use the letters K or P)

| 1. A bicyclist pedaling up a hill        | <br>2. An archer with his bow drawn        |  |
|------------------------------------------|--------------------------------------------|--|
| 3. A volleyball player spiking a ball    | <br>4. A baseball thrown to second base    |  |
| 5. The chemical bonds in sugar           | <br>6. The wind blowing through your hair  |  |
| 7. Walking down the street               | <br>8. Sitting in the top of a tree        |  |
| 9. A bowling ball rolling down the alley | <br>10. A bowling ball sitting on the rack |  |

What examples can you find in your home that are examples of kinetic and potential energy? (name two for each type of energy)

| 11. Kinetic: _ |  |
|----------------|--|
| 12. Kinetic: _ |  |
| 13. Potential: |  |
| 14. Potential: |  |

|   | Kinetic Energy – what does it depend on? |          |
|---|------------------------------------------|----------|
| ٢ | Thean object moves, the                  | it has   |
| ٢ | The greater the of a moving object, the  | it has   |
| ٢ | Kinetic energy depends on both           | <u>.</u> |

Solve the following word problems using the kinetic and potential energy formulas (<u>Be sure to show your work</u>!) <u>Formulas:</u>

|                       | KE = 0.5 ⋅m⋅ v² | OR | PE=m⋅g⋅h     |                      |
|-----------------------|-----------------|----|--------------|----------------------|
| v = velocity or speed | m = mass in kg  |    | g = 10 m/s/s | h = height in meters |

15. You serve a volleyball with a mass of 2.1 kg. The ball leaves your hand with a speed of 30 m/s. The ball has \_\_\_\_\_\_ energy. Calculate it.

- 16. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby has a mass of 1.5 kg. The carriage has \_\_\_\_\_\_ energy. Calculate it.
- 17. A car is traveling with a velocity of 40 m/s and has a mass of 1120 kg. The car has \_\_\_\_\_\_ energy. Calculate it.

18. A cinder block is sitting on a platform 20 m high. It weighs 7.9 kg. The block has \_\_\_\_\_\_ energy. Calculate it.

- 19. A roller coaster is at the top of a 72 m hill and weighs 134 kg. The coaster (at this moment) has \_\_\_\_\_ energy. Calculate it.
- 20. There is a bell at the top of a tower that is 45 m high. The bell weighs 19 kg. The bell has \_\_\_\_\_ energy. Calculate it.
- 21. Determine the kinetic energy of a 1000-kg roller coaster car that is moving with a speed of 20.0 m/s.
- 22. If the roller coaster car in the above problem were moving with **twice the speed**, then what would be its new kinetic energy?
- 23. A cart is loaded with a brick and pulled at constant speed along an inclined plane to the height of a seat-top. If the mass of the loaded cart is 3.0 kg and the height of the seat top is 0.45 meters, then what is the potential energy of the loaded cart at the height of the seat-top?
- 24. A 75-kg refrigerator is located on the 70<sup>th</sup> floor of a skyscraper (300 meters above the ground) What is the potential energy of the refrigerator?
- 25. The potential energy of a 40-kg cannon ball is 14000 J. How high was the cannon ball to have this much **potential** energy?
- IF most of the energy we use on earth comes from the sun how does that energy (light and thermal) end up
  - As \_\_\_\_\_ energy in our food
  - As \_\_\_\_\_ energy of wind or moving water
  - As \_\_\_\_\_\_ energy that powers our lights
  - As \_\_\_\_\_\_ energy when we move around

| hergy can be neither by ordinary means.         |                                                                                                                                                                                                                                    |  |  |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| from one form to another.                       |                                                                                                                                                                                                                                    |  |  |  |
| is the                                          | before                                                                                                                                                                                                                             |  |  |  |
|                                                 |                                                                                                                                                                                                                                    |  |  |  |
| Energy Transfer                                 | c .                                                                                                                                                                                                                                |  |  |  |
| from one object to another object.              |                                                                                                                                                                                                                                    |  |  |  |
| energy                                          | . Some of this thermal energy is                                                                                                                                                                                                   |  |  |  |
| you put to make the coffe                       | ee cooler.                                                                                                                                                                                                                         |  |  |  |
| <b>Energy Transforma</b>                        | tion                                                                                                                                                                                                                               |  |  |  |
| to another.                                     |                                                                                                                                                                                                                                    |  |  |  |
|                                                 |                                                                                                                                                                                                                                    |  |  |  |
| form of                                         | needs to be                                                                                                                                                                                                                        |  |  |  |
| to get work done.                               |                                                                                                                                                                                                                                    |  |  |  |
|                                                 |                                                                                                                                                                                                                                    |  |  |  |
| of energy transformations are needed to do work |                                                                                                                                                                                                                                    |  |  |  |
|                                                 |                                                                                                                                                                                                                                    |  |  |  |
| kinetic energy                                  | and potential energy                                                                                                                                                                                                               |  |  |  |
| kinetic energy                                  | and potential energy                                                                                                                                                                                                               |  |  |  |
|                                                 | VE9                                                                                                                                                                                                                                |  |  |  |
| INSHIP KE AND PE HA                             | VE:                                                                                                                                                                                                                                |  |  |  |
|                                                 | from one form<br>is the<br>Energy Transfer<br>energy<br>you put to make the coffer<br>Energy Transformate<br>to another.<br>form of<br>to get work done.<br>of energy trans<br>of energy trans<br>kinetic energy<br>kinetic energy |  |  |  |

- At the top of the first hill you have the \_\_\_\_\_ Gravitational Potential Energy
- As you begin your trip down the hill you \_\_\_\_\_\_ your speed resulting in a transformation from \_\_\_\_\_.
- At the bottom of the hill right before it goes back upward the \_\_\_\_\_\_, but the \_\_\_\_\_\_
- As it starts to move up the next hill or loop KE is \_\_\_\_\_\_ back into GPE

