\qquad
\qquad Period: \qquad

Select the best answer, writing the capital letter in the space provided

1) Which of the following is a vector quantity?
a. Temperature
b. Velocity
c. Mass
d. Distance
2) A bicycle wheel has frequency 876 Hz . How long does it take to complete three rotations?
a. 3.00 s
b. 2630 s
c. $1.14 \times 10^{-3} \mathrm{~s}$
d. $3.42 \times 10^{-3} \mathrm{~s}$
3) Determine the final velocity of a car that accelerates uniformly for 6.42 s at $1.35 \mathrm{~m} / \mathrm{s}^{2}$ from $7.53 \mathrm{~m} / \mathrm{s}$.
a. $1.14 \mathrm{~m} / \mathrm{s}$
b. $16.2 \mathrm{~m} / \mathrm{s}$
c. $7.53 \mathrm{~m} / \mathrm{s}$
d. $8.67 \mathrm{~m} / \mathrm{s}$
4) Find the initial velocity of a block that comes to a stop in 3.96 m decelerating at $7.14 \mathrm{~m} / \mathrm{s}^{2}$.
a. $28.3 \mathrm{~m} / \mathrm{s}$
b. $5.32 \mathrm{~m} / \mathrm{s}$
c. $7.52 \mathrm{~m} / \mathrm{s}$
d. $56.5 \mathrm{~m} / \mathrm{s}$
5) How long does it take an egg being dropped out a window to fall 24.0 m ?
a. 2.21 s
b. 9.80 s
c. 21.7 s
d. 2.45 s
6) When an object is thrown upwards from the surface of the Earth, it experiences an acceleration of
a. $\quad-9.80 \mathrm{~m} / \mathrm{s}^{2}$
b. $9.80 \mathrm{~m} / \mathrm{s}^{2}$
c. $6.67 \times 10^{-11} \mathrm{~m} / \mathrm{s}^{2}$
d. $0 \mathrm{~m} / \mathrm{s}^{2}$
7) A boat accelerates from rest to $64.0 \mathrm{~km} / \mathrm{h}$ in 31.0 s . What distance is covered?
a. 276 m
b. 158 m
c. 17.8 m
d. 0.573 m
8) A truck drives horizontally off a 285 m high cliff at $7.30 \mathrm{~m} / \mathrm{s}$. How far from the base of the cliff does it land?
a. 7.63 m
b. 55.7 m
c. 39.0 m
d. 39.4 m
9) A projectile is launched at $15.0 \mathrm{~m} / \mathrm{s}$ directed 60.0° above the horizontal from a 243 m hill. What is the range?
a. $110 . \mathrm{m}$
b. 8.49 m
c. 127 m
d. 63.7 m
10) What is the apparent weight of a 45.2 kg person in an elevator accelerating upwards at $3.96 \mathrm{~m} / \mathrm{s}^{2}$?
a. $\quad 11.4 \mathrm{~N}$
b. 622 N
c. 179 N
d. 443 N
```
position (m)
```


11) Between which times is the object stationary?
a. $0 \mathrm{~s}-10 \mathrm{~s}$
b. $15 \mathrm{~s}-40 \mathrm{~s}$
c. $10 \mathrm{~s}-15 \mathrm{~s}$
d. $40 \mathrm{~s}-55 \mathrm{~s}$
12) At what time is the object moving the fastest?
a. $0 \mathrm{~s}-10 \mathrm{~s}$
b. $15 \mathrm{~s}-40 \mathrm{~s}$
c. $10 \mathrm{~s}-15 \mathrm{~s}$
d. $40 \mathrm{~s}-55 \mathrm{~s}$

Use the velocity-time graph below to answer questions 13-14

13) Calculate the displacement between $4 s-12 \mathrm{~s}$.
a. 60 m
b. 56 m
c. 0 m
d. 48 m
14) At what time does the object change direction?
a. $\mathrm{Os}-2 \mathrm{~s}$
b. $2 \mathrm{~s}-10 \mathrm{~s}$
c. $10 \mathrm{~s}-12 \mathrm{~s}$
d. Never
15) What is the maximum force you can pull on a 4.94 kg block before it starts to move on a surface that has a coefficient of friction 0.565 ?
a. 2.79 N
b. 48.4 N
c. 85.7 N
d. 27.4 N
16) A 5.19 kg mass and a 7.35 kg mass are connected over a frictionless pulley. Calculate the tension in the string.
a. 59.6 N
b. 21.2 N
c. 8.77 N
d. 72.0 N
17) A 432 g block is hung on a spring with constant $15.0 \mathrm{~N} / \mathrm{m}$. How much does it stretch from the rest position?
a. 34.7 cm
b. 63.5 cm
c. 3.54 cm
d. 28.2 cm
18) A 3450 kg object is placed on a 19.0° ramp with friction coefficient 0.200 . What is the acceleration?
a. $\quad 2.79 \mathrm{~m} / \mathrm{s}^{2}$
b. $8.09 \mathrm{~m} / \mathrm{s}^{2}$
c. $1.34 \mathrm{~m} / \mathrm{s}^{2}$
d. $6.18 \mathrm{~m} / \mathrm{s}^{2}$
19) What is the gravitational force between the Earth ($m=5.98 \times 10^{24} \mathrm{~kg} ; r=6380 \mathrm{~km}$) and a 2.80 kg textbook at its surface?
a. $2.74 \times 10^{7} \mathrm{~N}$
b. $\quad 1.75 \times 10^{11} \mathrm{~N}$
c. 27.4 N
d. $1.75 \times 10^{8} \mathrm{~N}$
20) What is the gravitational field strength at the surface of a planet with mass $6.02 \times 10^{23} \mathrm{~kg}$ and radius 3570 km ?
a. $\quad 3.15 \times 10^{6} \mathrm{~N} / \mathrm{kg}$
b. $3.15 \mathrm{~N} / \mathrm{kg}$
c. $4.02 \times 10^{13} \mathrm{~N} / \mathrm{kg}$
d. $1.12 \times 10^{7} \mathrm{~N} / \mathrm{kg}$
21) A $2.10 \times 10^{3} \mathrm{~kg}$ car has a velocity of $1.45 \mathrm{~m} / \mathrm{s}$. How fast must a 4.82 kg bowling ball be thrown so that it has the same momentum as the car?
a. $632 \mathrm{~m} / \mathrm{s}$
b. $3050 \mathrm{~m} / \mathrm{s}$
c. $1.45 \mathrm{~m} / \mathrm{s}$
d. $6.99 \mathrm{~m} / \mathrm{s}$
22) What is the impulse of a 2.88 g hummingbird that flies from $1.00 \mathrm{~m} / \mathrm{s}$ to $12.3 \mathrm{~m} / \mathrm{s}$?
a. $32.5 \mathrm{kgm} / \mathrm{s}$
b. $35.4 \mathrm{kgm} / \mathrm{s}$
c. $0.0325 \mathrm{kgm} / \mathrm{s}$
d. $0.234 \mathrm{kgm} / \mathrm{s}$
23) A pitcher throws a 258 g ball at $91.0 \mathrm{~km} / \mathrm{h}$. If the ball is hit backwards at $37.0 \mathrm{~km} / \mathrm{h}$ and the contact time is 0.465 s , how large is the force on the ball?
a. 19.7 N
b. 9.17 N
c. 4.27 N
d. 71.0 N
24) A 876 kg car travelling northbound at $42.3 \mathrm{~m} / \mathrm{s}$ strikes a 591 kg car travelling westbound at $23.4 \mathrm{~m} / \mathrm{s}$. If the two cars stick together, with what velocity do they move off after the collision?
a. $\quad 27.0 \mathrm{~m} / \mathrm{s} 69.5^{\circ} \mathrm{W}$ of N
b. $48.3 \mathrm{~m} / \mathrm{s} 61.0^{\circ} \mathrm{W}$ of N
c. $\quad 27.0 \mathrm{~m} / \mathrm{s} 69.5^{\circ} \mathrm{N}$ of W
d. $48.3 \mathrm{~m} / \mathrm{s} 61.0^{\circ} \mathrm{N}$ of W
25) What is the velocity of a moving car that is 2280 kg and has $3.46 \times 10^{5} \mathrm{~J}$ of energy?
a. $303 \mathrm{~m} / \mathrm{s}$
b. $17.4 \mathrm{~m} / \mathrm{s}$
c. $12.3 \mathrm{~m} / \mathrm{s}$
d. $0.0550 \mathrm{~m} / \mathrm{s}$
26) How much work is required to bring a 4.20 kg puck moving $51.0 \mathrm{~km} / \mathrm{h}$ to rest?
a. 5460J
b. 29.8J
c. 421 J
d. 843J
27) A 264 kg lawnmower is pushed horizontally 55.0 m with a 813 N force directed 78.0° below the horizontal (that is, along the handle). Calculate the overall work done if the surface has coefficient 0.0123.
a. 7540J
b. $9.30 \times 10^{3} \mathrm{~J}$
c. 44700 J
d. 7010J
28) A 2.80 m long pendulum is drawn back 55.0° from the vertical. What is the maximum velocity the mass reaches?
a. $23.4 \mathrm{~m} / \mathrm{s}$
b. $4.84 \mathrm{~m} / \mathrm{s}$
c. $74.9 \mathrm{~m} / \mathrm{s}$
d. $3.41 \mathrm{~m} / \mathrm{s}$
29) A 735 kg rollercoaster is moving $46.0 \mathrm{~m} / \mathrm{s}$ atop the highest peak of 888 m . How fast does it move on the next hill 222 m above the ground?
a. $19.3 \mathrm{~m} / \mathrm{s}$
b. $132 \mathrm{~m} / \mathrm{s}$
c. $123 \mathrm{~m} / \mathrm{s}$
d. $16.0 \mathrm{~m} / \mathrm{s}$
30) A 648 g mass falls a distance of 5.19 m . If it lands with a speed of $7.37 \mathrm{~m} / \mathrm{s}$, what percent of the energy was lost to air resistance?
a. 15.4%
b. 46.6%
c. 33.0%
d. 17.6%
31) What is the power used in moving a box across a floor 4.35 m with a force of 121 N if it takes 6.93 s to complete the task?
a. 76.0 W
b. 528 W
c. 17.5 W
d. 0.630 W
32) A motorcycle accelerates from rest to $80.0 \mathrm{~km} / \mathrm{h}$. If $4.32 \times 10^{5} \mathrm{~J}$ of work is applied, what is the mass assuming no energy loss due to friction?
a. 38900 kg
b. 135 kg
c. 877 kg
d. 1750 kg
33) How much heat is required to raise 693 g of oil from $-25.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$ given the specific heat is $4.15 \mathrm{~J} / \mathrm{gK}$?
a. 288 kJ
b. 216 kJ
c. 144 kJ
d. 71.9 kJ
34) If a wave completes 10.0 cycles in 2.00 seconds and the wave is 3.30 m long, what is the speed of the wave?
a. $33.0 \mathrm{~m} / \mathrm{s}$
b. $45.5 \mathrm{~m} / \mathrm{s}$
c. $11.4 \mathrm{~m} / \mathrm{s}$
d. $16.5 \mathrm{~m} / \mathrm{s}$
35) A ray passes from air into an unknown substance with incident angle 43.2°. The angle of refraction is measured to be 34.5°. What is the refractive index of the material?
a. 0.0816
b. 1.25
c. 0.827
d. 1.21
36) Which of the following lenses and mirrors converge light?

a. II and IV
b. I
c. I and II
d. I and III
37) What is the critical angle for light in a glass block $(\mathrm{n}=1.52)$ that is immersed in water $(\mathrm{n}=1.33)$?
a. $\quad 1.14$
b. 61.0
c. 11.0
d. 29.0
38) What is the image distance for a light placed 7.35 cm from a concave lens with radius of curvature 4.65 cm ?
a. 3.40 cm
b. -0.430 cm
c. -0.566 cm
d. -1.77 cm
39) A 3.21 cm tall object is located 4.56 cm from a concave mirror producing an image 9.87 cm tall. What is the focal length of the mirror?
a. 6.76 cm
b. 0.148 cm
c. -14.0 cm
d. 3.07 cm
40) An object is placed 24.0 cm infront of a convex lens with focal length 15.0 cm . What is the magnification?
a. $\quad 40.0$
b. -1.67
c. -0.600
d. 0.625

