Biology 12 August 2002 Provincial Examination

Answer Key / Scoring Guide

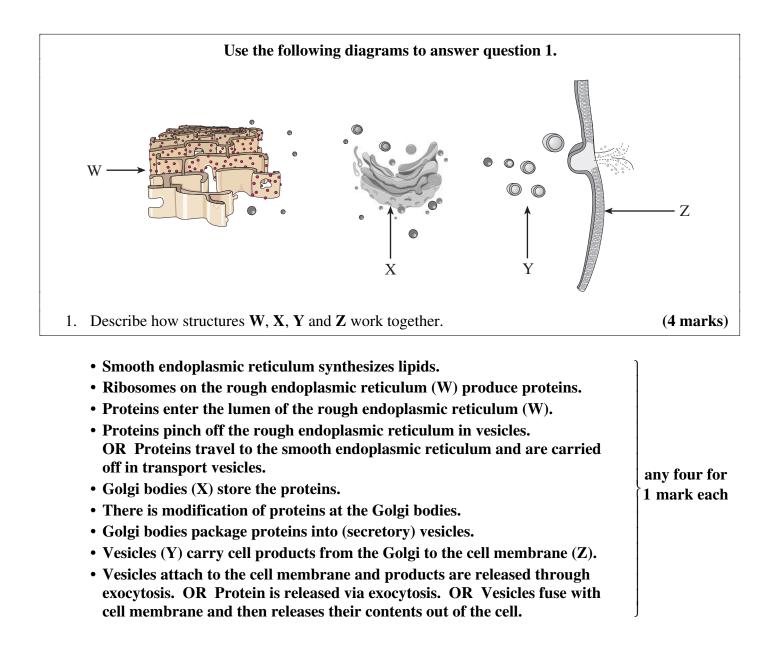
CURRICULUM:

Organizers	Sub-Organizers
1. Cell Biology	A, B, C, D
2. Cell Processes and Applications	E, F, G, H
3. Human Biology	I, J, K, L, M, N, O, P

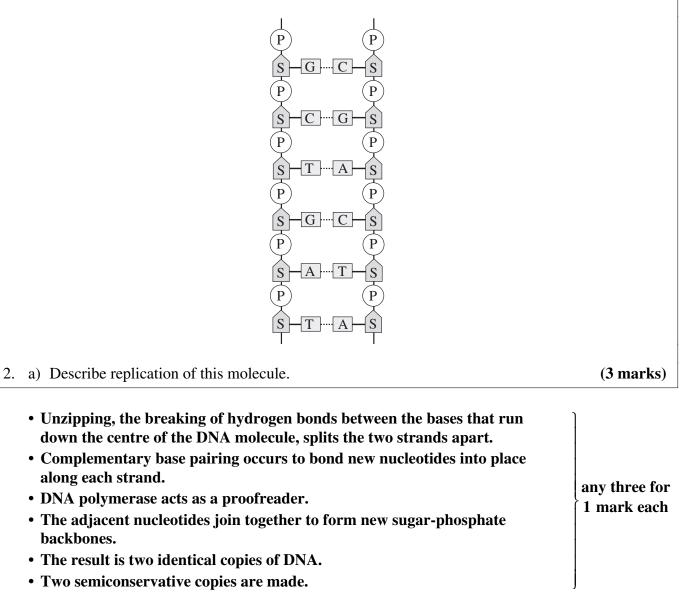
Part A: Multiple Choice

Q	K	С	S	CO	PLO	Q	K	С	S	CO	PLO
1.	С	Κ	1	1, 2	A1; E1	26.	А	Н	1	3	I6, 7
2.	С	Κ	1	1, 2	A1; G1	27.	D	Н	1	3, 2	I7; J2; G7
3.	С	Н	1	1	B1; C2, 4, 10; D1	28.	С	Κ	1	3	J5
4.	D	Κ	1	1	B3	29.	D	Н	1	3, 1	J9, 11; D2
5.	В	U	1	1	C1, 2	30.	С	U	1	3	J11, 9
6.	С	Н	1	1	C4, 1	31.	А	Κ	1	3	L5, 1
7.	D	Н	1	1	C7	32.	В	U	1	3	L3, 7, 1
8.	А	Н	1	1	C8, 2	33.	В	U	1	3	L4, 5, 1
9.	С	U	1	1	C9, 2	34.	D	U	1	3	M2
10.	D	Κ	1	1	D3	35.	В	Κ	1	3	M1
11.	D	Κ	1	2	E1	36.	D	Н	1	3	M3
12.	А	Н	1	2	E1; G7	37.	А	Н	1	3	M3
13.	В	Κ	1	2	F1	38.	D	U	1	3	N2
14.	D	Κ	1	2	F3, 1	39.	С	Κ	1	3	N4
15.	В	U	1	2, 1	G1; C11	40.	С	Κ	1	3	01
16.	В	Κ	1	2	G2, 3, 4	41.	В	Κ	1	3	01
17.	В	U	1	2	G5	42.	В	U	1	3	01
18.	С	Κ	1	2	H1	43.	В	U	1	3	O2, 1
19.	С	Н	1	2	H1, 6	44.	С	Н	1	3	O2
20.	D	Н	1	2	H2	45.	D	U	1	3	O2, 5
21.	D	U	1	2	H1, 3, 6	46.	С	Н	1	3	O5
22.	С	Κ	1	3	I1	47.	А	Κ	1	3	P1, 2
23.	В	U	1	3	I1, 5	48.	D	Κ	1	3	P9, 10, 6; N5
24.	А	U	1	3	I1	49.	А	Н	1	3	P8, 9, 10; N5
25.	А	Κ	1	3	I2, 4	50.	А	U	1	3	P12

Multiple Choice = 50 marks


Part B: Written Response

Q	В	С	S	CO	PLO
1.	1	U	4	1, 2	A2, 1, 3; E1
2.	2	U	6	1, 2	D2; E1
3.	3	Κ	3	2	G3, 4, 2, 5
4.	4	U	5	3	I1, 2, 4
5.	5	Κ	8	3	J2, 4, 6, 8, 11; K1
6.	6	U	3	3	J12
7.	7	U	3	3	L6
8.	8	U	5	3	M5, 6
9.	9	U	3	3	M2, 4
10.	10	U	5	3	O2
11.	11	U	5	3	P1, 3, 5, 6


Written Response = 50 marks

Multiple Choice = 50 (50 questions) Written Response = 50 (11 questions) EXAMINATION TOTAL = 100 marks

LEGEND:Q = Question NumberB = Score Box NumberS = ScoreK = Keyed ResponseC = Cognitive LevelCO = Curriculum OrganizerPLO = Prescribed Learning Outcome

(1 mark)	b) What is the role of this molecule in determining the structure of a protein?
either one for	 The sequence of bases in this DNA molecule determines the sequence of amino acids in the resulting protein. Produce mRNA → tRNA → amino acid.

• C G A C U A (1 mark)

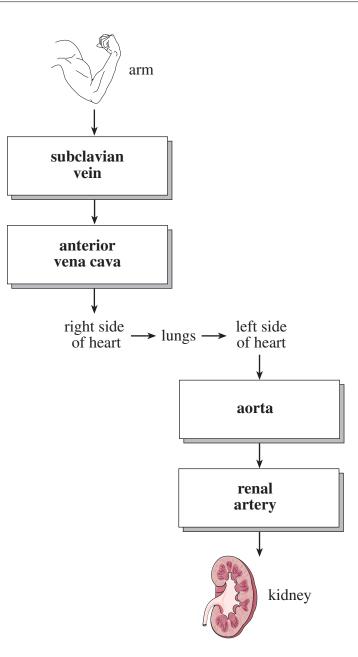
d) Give the anticodons that are complementary to this mRNA sequence. (1 mark)

• G C U G A U (1 mark)

. a) Why do oxygen molecules enter a cell at a different rate than protein molecules	s. (1 mark)
 Oxygen molecules are smaller. Oxygen molecules enter by diffusion. Oxygen is a gas and gases diffuse across the cell membrane more quickly. Oxygen is neutral / unchanged / non-polar. Protein molecules are larger. Protein molecules enter by endocytosis. 	any one for 1 mark
Note to markers:	J

Do not accept different sizes.

b) State two ways to increase the rate of oxygen movement into a cell		(2 marks)
 increase the temperature increase the concentration gradient OR explanation of oxygen gradient OR increase the respiratory rate increase the metabolic rate of the cell increase cytoplasmic streaming secretion of thyroxin 	any two for 1 mark each	


Note to markers:

Do not accept increase in surface area.

Use the following diagram to answer question 4. 4. Explain how the structure above is well-suited for its function. (5 marks) • The stomach has folds that increase the surface area. • Gastric glands in the lining secrete HCl (hydrochloric acid) that activates pepsinogen / kills bacteria. • Mucous cells in the lining secrete mucus that protects the stomach lining (prevents auto-digestion or ulcers). • Cells in the lining secrete pepsinogen to hydrolyze proteins into peptides. any five for • The stomach can expand to store partially digested food. 1 mark each • Muscular walls mechanically break down food. • Smooth muscles move chyme to the pyloric sphincter via peristalsis. • Cardiac sphincter prevents food from re-entering the esophagus. • Pyloric sphincter controls the amount of chyme entering the duodenum. • Cells secrete gastrin to release more gastric juice. • Gastric glands in lining secrete pepsinogen that will be activated to pepsin

and digest proteins \rightarrow dipeptides.

Use the fol	lowing list to answer question 5 a).
	 aorta renal vein renal artery subclavian vein subclavian artery pulmonary artery anterior vena cava
	the list above to fill in the boxes that describe the path dney. (Use only one term per box. Not all of the terms (4 marks)

5. a)

b) Give one function of each of the following. (4 marks: 1 mark each) carotid arteries:

any one for

1 mark

- transport / carry blood to the head*
 transport / carry nutrients to the head*
- transport / carry oxygenated blood to the head*
- detect / sense hydrogen ion concentrations in the blood
- detect / sense carbon dioxide concentrations in the blood
- elastic design counteracts effects of high blood pressure / can withstand high blood pressure

*Note to markers:

Student must specifically state or identify the head.

 lymph veins:

 • transport fats / lipids

 • carry lymphocytes / white blood cells

 • carry lymph (from the tissues to the circulatory system [subclavian veins])

 • carry excess tissue fluid back to circulatory system

 • carry excess tissue fluid to lymph nodes for cleansing / purification

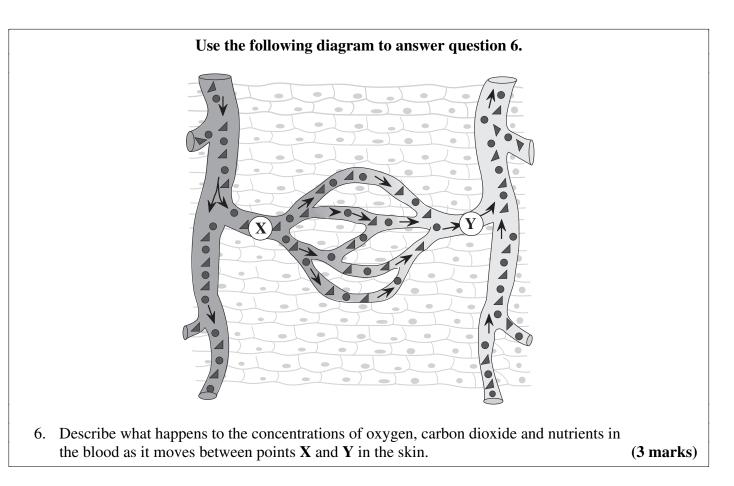
antibodies:

- can be used to determine blood type (blood typing)
- combine with antigens, inactivating them / marking them for destruction
- fight infection / foreign invaders
- provide immunity to pathogens / disease
- neutralize antigens / pathogens

chordae tendineae:

- prevent heart valves from inverting
- anchor AV valves
- stabilize / give structural support to AV valves
- prevent AV valves from opening in wrong direction

Note to markers:


Student must identify as either AV or heart valves.

any one for

1 mark

any one for

1 mark

- The concentration of nutrients decreases. (1 mark)
- The concentration of oxygen decreases (the concentration of oxyhemoglobin decreases). (1 mark)
- The concentration of carbon dioxide increases (the concentration of carbaminohemoglobin increases). (1 mark)

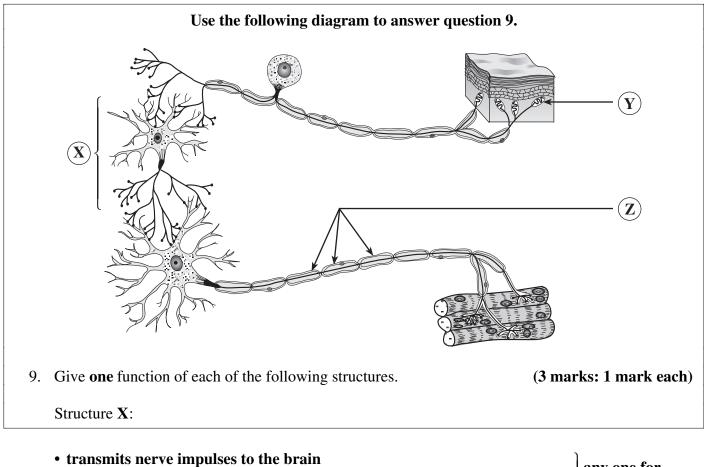
OR

• Oxygen / nutrient concentration high at X and carbon dioxide concentration high at Y. (1 mark)

- Carbon dioxide concentrations in the blood increase because of increased cellular respiration due to exercising.
- The medulla oblongata detects the increased levels of carbon dioxide / hydrogen ions.
- The medulla oblongata sends an increasing number of impulses to the diaphragm and rib muscles causing them to contract faster.
- Muscles need an increased oxygen supply.
- Increased muscle activity needs ATP.
- Increased hydrogen ion concentration increases the breathing rate.
- Increased carbon dioxide concentration increases the breathing rate.
- Muscles need more glucose.

Note to markers:

Do not give marks for the following:


- More oxygen needed by body or just cells.
- Sympathetic nervous system (adrenalin) stimulates an increase in breathing rate (fight or flight reaction).
- More oxygen is used for the production of ATP from glucose.

any three for

1 mark each

8.	Describe the sequence of events required for a nerve impulse to cross a synapse. (You may use a labelled diagram as part of your answer. You may use a pencil	
	to draw your diagram.)	(5 marks)
	• An action potential travelling along an axon reaches a presynaptic membrane.	
	Calcium ions flow in.	
	 Microfilaments contract to pull synaptic vesicles filled with a neurotransmitter. 	
	 Vesicles pulled to the presynaptic membrane. 	
	• The neurotransmitter is released into the synaptic cleft.	any five for
	• The neurotransmitter diffuses across to the postsynaptic membrane.	1 mark each
	• Neurotransmitter binds with a receptor.	
	• The threshold of the postsynaptic membrane is reached, resulting in the opening of the sodium gates.	
	 Sodium ions entering the postsynaptic membrane create an action potential (depolarization). 	
	• Enzymes break down excess neurotransmitter / repackaged into vesicles.	J
	Note to markers:	

Student loses 1 mark for incorrect sequence. If diagram only, up to full marks awarded if sequence and process is clear.

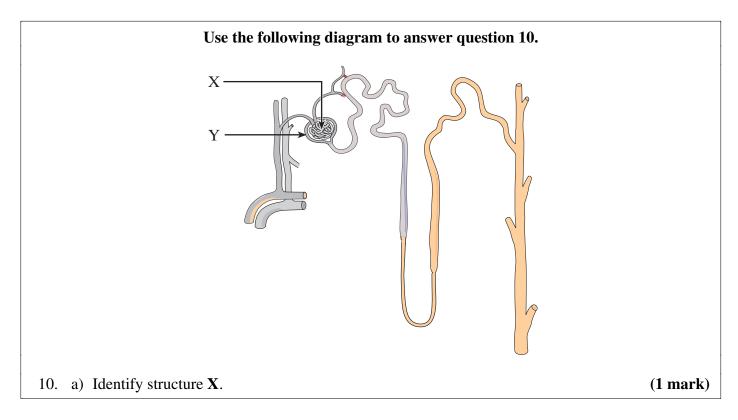
- transmits nerve impulses from the sensory neuron to the motor neuron
- modulates nerve impulses

any one for 1 mark

Structure Y:

- receptor of environmental stimuli
- initiates nerve impulses
- sends nerve impulses to sensory neuron

any one for 1 mark


any one for

1 mark

Structure Z:

- insulates the neuron
- speeds up nerve impulses
- helps neurons regenerate
- causes saltatory conduction of nerve impulses

028bik

• glomerulus (1 mark)

b) Describe the process that occurs between X and Y .	(2 marks
• The materials move from X (glomerulus) to Y (Bowman's capsule).)
Pressure filtration.	any two for
 The materials move due to high blood pressure. 	1 mark each
• Blood plasma separates into filterable and non-filterable components.	J

c) Identify two components of blood that cannot move into the filtrate under	
normal conditions.	(2 marks)

- blood proteins
- proteins / enzymes
- penicillin
- platelets
- red blood cells
- white blood cells
- formed elements

Note to markers:

Student can not receive marks for red blood cells / white blood cells / platelets AND formed elements.

any two for

1 mark each

11. a) Give **three** characteristics of semen and describe how each of these characteristics facilitates the function of semen.

(3 marks)

 Semen contains water for sperm transport. Semen contains lubricants for sexual intercourse. Semen contains buffers to maintain pH. Semen is basic and sperm are more viable in a basic solution. Semen contains fructose which provides an energy source for swimming. Semen contains prostaglandins which cause the uterus to contract and propel the sperm along. Semen contains coagulants which cause the semen to coagulate and remain in the vagina. Semen contains sperm which are necessary for fertilization. Semen contains mucus which neutralizes acidic urine in urethra 	any three characteristics for $\frac{1}{2}$ mark each AND any three functions for $\frac{1}{2}$ mark each
• Semen contains mucus which neutralizes acidic urine in urethra of male.	

 There would be no sex drive. 	any two for 1 mark each
 Sperm would not be able to mature. 	
Secondary sex characteristics would not develop.	
• The interstitial cells are responsible for testosterone secretion.	
• The interstitial cells would not secrete testosterone.	
Decrease negative feedback.	J

Student may give a function of testosterone not listed.

END OF KEY